SYNTHESIS OF CEREBROSIDE B_{1b} WITH ANTIULCEROGENIC ACTIVITY II¹⁾. TOTAL SYNTHESIS AND DETERMINATION OF ABSOLUTE CONFIGURATION OF CEREBROSIDE B_{1b} AND ITS STEREOISOMERS

Shin-ichi Kodato⁺, Masako Nakagawa^{*}, and Tohru Hino^{*}

Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Chiba, 260, Japan

(Received in Japan 16 June 1989)

Abstract: First total synthesis of optically active cerebroside B_{1b} (1b) is described. The absolute configuration of 1b was determined to be $(2\underline{S},3\underline{R},4\underline{E},8\underline{Z},2'\underline{R})-1-\underline{O}-(B-D-glucopyranosyl)-\underline{N}-(2'-hydroxyhexadecanoyl)-4,8-sphingadienine.$

Several total syntheses of the cerebrosides have been developed^{2a),4)} since Shapiro and Flowers reported the first total synthesis of a cerebroside in 1961³⁾. In the preceding paper¹⁾, we reported the synthesis of the ceramide 5, the aglycone of 1b, and three other diastereomeric ceramides 6, 7, and 8 from 2 with 3 or 4, respectively (Chart 1). We report here a full detail of the total synthesis of optically active cerebroside B_{1b} (1b)⁵⁾ and its diastereomers. For the determination of the absolute configuration of 1b, we planned to identify the derivatives 32, 33 from a synthetic intermediate with that derived from the natural sphingosine, which is commercially available and the absolute configuration has been known.

In preference to the total synthesis of 1b, the glycosylation of the Npalmitoyl derivative 13, which was prepared in a similar manner described in the preceding paper¹⁾, was investigated (Scheme I). Thus, the racemic-amine 2 was condensed with palmitoyl chloride 9 (1.0 equiv) in the presence of triethylamine in CH_2Cl_2 to give the ceramide 10 in 98% yield. Deacetonization of 10 in the presence of pyridinium p-toluenesulfonate (PPTS) in MeOH gave 11 in 90% yield. Subsequent tritylation of 11 with trityl chloride (1.2 equiv) in the presence of 4-dimethylaminopyridine (DMAP) and triethylamine in CH_2Cl_2 gave 12 in 74% yield accompanied with a 17% yield of the recovered 11. Benzoylation of 12 with benzoyl chloride in pyridine followed by detritylation with p-toluenesulfonic acid (TsOH) in MeOH-CH₂Cl₂ (1 : 1) afforded the 1-0-unprotected ceramide 13 in 92% yield.

B-Glycosylation of 13 with $0-(2,3,4,6-tetra-0-acetyl-\alpha-D-glucopyranosyl)-trichloacetimidate 14 (2.5 equiv) in CH₂Cl₂ in the presence$

of BF_3 -etherate (2.0 equiv) and molecular sieves 4A according to the method of Schmidt⁶⁾ gave the protected cerebrosides 15 and 16 (-78%) accompanied with some impurities derived from the imidate and a 22% yield of the acetylated byproduct 17. Despite only small differences in the R_f values, the separation of the diastereomers 15 and 16 could be realized by silica gel flash column chromatography. Stereochemistry of 15 and 16 was deduced to be D-<u>erythro</u> (2<u>S</u>, 3<u>R</u>) and L-<u>erythro</u> (2<u>R</u>, 3<u>S</u>), respectively, according to the report (tlc behavior) of Schmidt^{4b}. Subsequent deprotection of 15 and 16 was performed with a catalytic amount of NaOMe in MeOH at room temperature but surprisingly, secondary benzoate resisted methanolysis. Complete deprotection of 15 and 16 was accomplished with excess NaOMe to afford the cerebrosides 18 and 19 in 84% and 60% yields, respectively.

Encouraged by these preliminary result, we carried out similar glycosylation and deprotection of four diastereomeric ceramides 5, 6, 7, and 8, which were prepared in the preceding paper¹⁾ (Scheme II). Similar treatment of 5 with the imidate 14 (2.2 equiv) in CH_2Cl_2 in the presence of BF_3 -etherate (2.2 equiv) and molecular sieves 4A gave 20 as the main product accompanied with a small amount of the acetylated compound 21. Complete deprotection of 20 with NaOMe (excess) in MeOH gave the cerebroside 1b (mp 183°C, $[\alpha]_D$ +4.6°) in 57% yield from 5.

7264

Likewise, ceramides 6, 7, and 8 were converted to the corresponding cerebrosides 24 (55%, mp 149°C, $[\alpha]_{D}$ +1.7°), 27 (57%, mp 151°C, $[\alpha]_{D}$ -14.7°), and 30 (57%, mp 178°C, $[\alpha]_{D}$ -18.7°) via the protected cerebrosides 22, 25, and 28, respectively. During the glycosylation of 6, 7, and 8, the corresponding acetates 23, 26, and 29 were obtained as the minor product.

The cerebroside 1b among four diastereomers was completely identical with the natural cerebroside B_{1b}^{5} in all respects (mp, IR, Mass, and ¹H-NMR spectra, chromatographic mobility) (see Experimental). The purity of 1b was assessed by the HPLC⁷, which showed two peaks in the ratio of 92 : 8. The major and minor peaks were corresponded to those of the natural cereabroside B_{1b} (1b) and B_{1a} (1a)(8E isomer)¹, respectively. The contamination of 1a was derived from Wittig reaction for preparation of tetradec-4(Z)-enol, which was described in detail in the preceding paper¹.

In order to elucidate the absolute configuration of 1b, the synthetic intermediate 31 was hydrogenated over PtO_2 in MeOH followed by detritylation in the presence of <u>p</u>-toluenesulfonic acid in MeOH-CH₂Cl₂ (1 : 1) to give the

tetrahydro derivative 32 ($[\alpha]_D$ +11.3°) in 82% yield. Deacetylation of 32 with K₂CO₃ in MeOH afforded the ceramide 33 (mp 121.5-124°C, $[\alpha]_D$ +19.6°) in 86% yield (Scheme III).

On the other hand, hydrogenation of the natural sphingosine⁸) 34 with PtO₂ in MeOH gave 35 in 98% yield. Acetonization of 35 with 2, 2-dimethoxypropane in the presence of $(\pm)-10$ -camphorsulfonic acid gave 36 in 68% yield. Condensation of 36 with $D(\underline{R})-\alpha$ -acetoxypalmitic acid 3⁹) in the presence of DCC and 1-hydroxybenzotriazole in CH₂Cl₂ gave the protected **Scheme II**

ceramide 37 in 96% yield. Deacetonization of 37 in the presence of ptoluenesulfonic acid in MeOH-CH₂Cl₂ (1 : 1) gave 32 ($[\alpha]_{p}$ +11.9°) in 81% yield. Direct condensation of 35 with D(R)-3 in a similar manner also gave 32 in good yield, but the purification of the product 32 was difficult due to the contamination of dicyclohexylurea. Deacetylation of 32 with K_2CO_3 in MeOH afforded 33 (mp 121.5-124°C, $[\alpha]_{D}$ +19.6°) in 92% yield. Ceramides 32 and 33 thus obtained were completely identified with the synthetic specimens obtained as above, demonstrating that cerebroside B_{1b} (1b) has the same absolute configuration with natural sphingosine. In conclusion, the total synthesis of optically active cerebroside B_{1b} (1b) was achieved and the absolute configuration of which was determined to be (2S, 3R, 4E, 8Z, 2'R)-1-0-(B-D-glucopyranosyl)-N-(2'-hydroxyhexadecanoyl)-4,8-shingadienine [(2S,3R)-1-0-6-D-glucopyranosyl-N-2'-hydroxypalmitoyl-sphinga-4E,8Z-dienine)]. Further extension of the present method to the synthesis of cerebroside B_{1a} (1a) is in progress.

Experimental

Melting points were determined with a Yamato MP-21 or a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were obtained with an Analect FX-6200 FT-IR spectrophotometer. Mass spectra (MS) were recorded on a JEOL JMS-HX 100 mass spectrometer. 1 H-NMR spectra were recorded at 100 MHz

with a JEOL FX-100S, at 200 MHz with a JEOL JNM-FX 200, at 270 MHz with a JEOL JNM FX-270 or a JEOL GX-270, and at 400 MHz with a JEOL JNM-GSX 400 spectrometer. All chemical shifts are reported downfield from an internal Me_4Si standard and given as δ values (ppm). Optical rotations were recorded with an Union PM-201 automatic digital polarimeter. Elemental analyses were performed on a Perkin-Elmer 240 C, H, and N analyzer. Unless otherwise noted, IR spectra (ν in cm⁻¹) refer to KBr disks and NMR spectra to solutions in CDCl₃.

Condensation of 2 with palmitoyl chloride (9) to 10. To a stirred solution of 2 (1.44g, 4.27 mmol) and triethylamine (0.60 g, 5.93 mmol) in CH₂Cl₂ (20 ml) was added palmitoyl chloride 9 (1.17g, 4.26 mmol) under ice-cooling and the mixture was stirred for 30 min at the same temperature. The reaction mixture was diluted with AcOEt, washed with water and brine, and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a colorless oily residue (2.64 g), which was purified by silica gel column chromatography (80 g; toluene : AcOEt = 4 : 1) to give 10 (2.40 g, 98%) as colorless waxy crystals, mp 37-9°C. IR 3280, 2990, 2920, 2850, 1640, 1550, 1460, 1375, 1260, 1220, 1200, 1160, 1120, 1085, 1025, 960, 870, 720; EIMS 575 (M⁺), 560, 518, 281, 44 (bace peak), 43; 1 H-NMR (100 MHz), 0.88 (6H, t, C $_{18}$ -H and C' $_{16}$ -H), 1.0-1.7 (40H, m, C_{11} -H ~ C_{17} -H and C'_{3} -H ~ C'_{15} -H), 1.42 (3H, s, CH_{3}), 1.49 (3H, s, CH₃), 1.8-2.2 (8H, m, C₆-H, C₇-H, C₁₀-H, and C'₂-H), 3.5-4.2 (4H, m, C₁-H, C_2-H , and C_3-H), 5.22 (1H, d, J=7.0 Hz, NH, exch), 5.3-5.6 (3H, m, C_4-H , C_8-H H, and C_{q} -H), 5.78 (1H, m, C_{5} -H).

Deacetonization of 10 to 11. A solution of 10 (2.40 g, 4.17 mmol) and pyridinium p-toluenesulfonate (PPTS) (0.50 g, 1.95 mmol) in MeOH (50 ml) was stirred for 3 days at room temperature under argon atmosphere. Evaporation of the solvent gave a residue, which was dissolved in CHCl₃. The solution was washed with water and brine and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a colorless waxy solid (2.34 g), which was purified by silica gel column chromatography (70g; toluene : AcOEt = 1 : 1) to give 11 (2.01 g, 90%) as colorless waxy crystals. Recrystallization from etherhexane afforded colorless waxy crystals 11, mp 73-74 °C. IR 3370br, 3280, 2940, 2900, 2830, 1630, 1540, 1460, 1370, 1250, 1040, 950, 710; EIMS 535(M⁺), 517, 298, 281, 60(base peak), 43; ¹H-NMR (100 MHz) 0.88 (6H, t, C₁₈-H and C'₁₆-H), 1.26 (38H, m of s-like) and 1.63 (2H, m)(C₁₁-H ~ C₁₇ and C'₃-H ~ C'₁₅-H), 1.8-2.3 (8H, m, C₆-H, C₇-H, C₁₀-H, and C'₂-H), 2.9-3.1 (2H, m, OH, exch), 3.6-4.0 (3H, m, C₁-H and C₂-H), 4.31 (1H, m, C₃-H; t-like after D₂O addition), 5.3-5.5 (2H, m, C₈-H and C₉-H), 5.53 (1H, dd, J=15.4, 5.6 Hz, C₄- H), 5.81 (1H, m, C_5 -H), 6.29 (1H, d, J=7.0 Hz, NH, exch). Anal. Calcd for $C_{34}H_{65}NO_3$: C, 76.20; H, 12.23; N, 2.61. Found : C, 76.46; H, 12.51; N, 2.57.

Tritylation of 11 to 12. A solution of 11 (1.14 g, 2.13 mmol), trityl chloride (0.72 g, 2.58 mmol), 4-dimethylaminopyridine (DMAP)(0.06 g, 0.491 mmol), and triethylamine (1.5 ml, 10.8 mmol) in CH_2Cl_2 (15 ml) was stirred for 16.5 h at room temperature under argon atmosphere. The reaction mixture was diluted with $CHCl_3$, washed successively with water, saturated NH_4Cl soution, water, and brine, and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a pale yellow caramel (2.39 g), which was column chromatographed on silica gel (90 g). The first eluate, with toluene-AcOEt (10 : 1), gave 12 (1.23 g, 74%) as colorless waxy crystals. The second eluate, with toluene-AcOEt (11 : 2), gave the recovered 11 (0.19 g, 17%) as colorless waxy crystals.

1-O-unprotected ceramide (13). To a stirred solution of 12 (753 mg, 0.968 mmol) in pyridine (10 ml) was added benzoyl chloride (280 mg, 1.99 mmol) and the mixture was stirred for 2.5 days at room temperature. The reaction mixture was evaporated to give a residue, which was dissolved in AcOEt. The solution was washed with water (x2) and brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a slightly yellow caramel (1.11 g), which was purified by silica gel column chromatography (30 g; toluene : AcOEt = 20 : 1). The obtained colorless caramel (973 mg) was dissolved in MeOH- CH_2Cl_2 (20 ml, 1 : 1 by vol). To this solution was added p-toluenesulfonic acid (monohydrate) (190 mg, 1.00 mmol) and the resulting mixture was stirred for 100 min at room temperature. The reaction mixture was diluted with CH₂Cl₂, washed successively with saturated NaHCO₂ solution, water, and brine, and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a colorless residue, which was purified by silica gel column chromatography (35 g; toluene : AcOEt = 3 : 2) to give 13 (567 mg, 92%) as colorless waxy crystals. Recrystallization from hexane afforded colorless fine needles 13, mp 59-61°C. IR 3420br, 3320, 2925, 2860, 1710, 1640, 1550, 1465, 1450, 1375, 1310, 1270, 1170, 1110, 1065, 980, 705; EIMS 639 (M⁺), 517, 280, 250, 122, 105, 69, 60, 43 (base peak); ¹H-MNR (100 MHz) 0.88 (6H, t, C_{18} -H and C'_{16} -H), 1.25 (40H, s-like m, C₁₁-H ~ C₁₇-H and C'₃-H ~ C'₁₅-H), 1.8-2.3 (8H, m, C₆-H, C₇-H, C₁₀-H, and C'₂-H), 2.98 (1H, m, OH, exch), 3.72 (2H, m, C₁-H; d after D₂O addition), 4.28 (1H, m, C_2 -H; quintet-like after D_2O addition), 5.21-5.81 (5H, m, C_2 -H, C_4 -H, C_5 -H, C_8 -H, and C_9 -H), 6.09 (1H, d, J=9.0 Hz, NH, exch), 7.35-7.68 (3H, m, arom H), 7.99-8.10 (2H, m, arom H). Anal. Calcd. for C₄₁H₆₉NO₄ : C, 76.94; H, 10.87; N, 2.19. Found : c, 77.07; H, 10.99; N, 2.21.

Glycosylation of 13 to 15 and 16. To a mixture of the ceramide 13 (100 mg, 0.156 mmol), the imidate 14^{6} (190 mg, 0.386 mmol), and molecular sieves 4A (0.50 g) was added CH₂Cl₂ (4 ml) via syringe under argon atmosphere and the mixture was cooled in an ice bath. To this mixture was added dropwise a solution of BF_2 -etherate (0.04 ml, 0.317 mmol) in CH_2Cl_2 (1 ml) via syringe and the mixture was stirred for 1 h at the same temperature and for 4 h at room temperature. To the mixture was added saturated NaHCO3 solution (1 ml) and the resulting mixture was filtered and washed with CHCl3. The filtrate and washings were washed successively with saturated NaHCO, solution, water, and brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a residue (280 mg), which was column chromatographed on silica gel (25 g, toluene : acetone = 10 : 1). The first eluate gave 17 (23 mg, 22%) as colorless waxy crystals. The second eluate gave the mixture of 15 and 16 (143 mg) as a colorless waxy solid, which was rechromatographed on silica gel with flash column (30 g; toluene : acetone = 10 :1). The first eluate gave 15 (40 mg) as a colorless waxy solid. The second eluate gave the mixture of 15 and 16 (27 mg). The third eluate gave 16 (56 mg) as a colorless waxy solid with some impurities derived from the imidate (a total yield of 15 and 16 was 123 mg; ~78%). 17 : mp 49°C. IR (neat) 3320, 3070, 3010, 2920, 2850, 1730, 1720, 1640, 1600, 1580, 1535, 1460, 1415, 1360, 1340, 1315, 1260, 1220, 1180, 1110, 1070, 1030, 970, 940, 850, 830, 800, 710, 680, 610; EIMS 681 (M⁺), 621, 559, 280, 122, 105, (base peak), 57, 43; ¹H-NMR (100 MHz) 0.88 (6H, t, C_{18} -H and C'_{16} -H), 1.25 (40H, s-like m, C_{11} -H ~ C_{17} -H and C'_{3} -H ~ C'₁₅-H), 2.04 (3H, s, CH₃CO), 1.8-2.3 (8H, m, C₆-H, C₇-H, C₁₀-H, and C'₂-H), 4.1-4.4 (2H, m, C₁-H), 4.60 (1H, m, C₂-H), 5.3-5.9 (5H, m, C₃-H, C₄-H, C₅-H, C_g-H, and C_g-H), 5.75 (1H, d, J=9.0 Hz, NH, exch), 7.38-7.67 (3H, m, arom H), 7.98-8.08 (2H, m, arom H). 15 : IR (neat) 3350, 2920, 2850, 1745, 1710, 1650, 1595, 1525, 1460, 1450, 1430, 1370, 1310, 1255, 1220, 1170, 1110, 1040, 960, 905, 840, 800, 710, 685, 600; EIMS 847 (M⁺-PhCO₂H), 788, 728, 331, 262, 169 (base peak), 122, 109, 105, 43; ¹H-NMR (270 MHz) 0.88 (6H, t, J=6.9 Hz, C_{18} -H and C'_{16} -H), 1.26 (40H, s-like m, C_{11} -H ~ C_{17} -H and C'_{3} -H ~ C'_{15} -H), 1.60 (2H, m, C_6 -H, C_7 -H, or C_{16} -H), 1.9-2.2 (18H, m, C_6 -H, C_7 -H, or C_{10} -H, C'2-H, and CH3CO x4), 3.64 (1H, m, H-5), 3.71 (1H, dd, J=10.0, 2.7 Hz, C1-H), 3.91 (1H, dd, J=10.0, 3.6 Hz, C₁-H), 4.07 (1H, dd, J=12.5, 2.4 Hz, H-6), 4.25 (1H, dd, J=12.5, 4.9 Hz, H-6), 4.42 (1H, d, J=7.6 Hz, H-1), 4.49 (1H, m, C₂-H), 5.0-5.2 (3H, m, H-2, H-3, and H-4), 5.25-5.40 (2H, m, C₈-H and C₉-H), 5.40-5.55 (2H, m, C₃-H and C₄-H), 5.80 (1H, d, J=9.2 Hz, NH, exch), 5.79-5.89 (1H, m, C_c-H), 7.46 (2H, m, arom H), 7.59 (1H, m, arom H), 8.02 (2H, m, arom 16 : IR (neat) 3370, 3325, 3250, 3190, 2920, 2850, 1740, 1710, 1690, H). 1650, 1610, 1600, 1530, 1460, 1450, 1430, 1370, 1310, 1250, 1220, 1170, 1105, 1065, 1040, 960, 905, 830, 745, 710, 645, 615, 600; EIMS 847 (M⁺-PhCO₂H),

788, 728, 331, 262, 169 (base peak), 122, 109, 105, 43; ¹H-NMR (270 MHz) 0.88 (6H, t, J=6.9 Hz, C_{18} -H and C'_{16} -H), 1.25 (40H, s-like m, C_{11} -H ~ C_{17} -H and $C'_{3}-H \sim C'_{15}-H$, 1.60 (2H, m, $C_{6}-H$, $C_{7}-H$, or $C_{10}-H$), 1.9-2.2 (18H, m, $C_{6}-H$, C₇-H, or C₁₀-H, C'₂-H, and CH₃CO x4), 3.66 (2H, m, C₁-H and H-5), 3.99 (1H, dd, J=12.2, 2.1 Hz, H-6), 4.03 (1H, dd, J=9.9, 4.0 Hz, C₁-H), 4.13 (1H, dd, J=12.2, 4.9 Hz, H-6), 4.48 (1H, d, J=7.9 Hz, H-1), 4.49 (1H, m, C₂-H), 4.97 (1H, dd, J=9.8, 7.9 Hz, H-2), 5.07 (1H, dd, J= 9.8, 9.8 Hz, H-3 or H-4), 5.17 (1H, dd, J=9.5, 9.5 Hz, H-3, or H-4), 5.2-5.4 (2H, m, C₈-H and C₉-HO, 5.4-5.6 (2H, m, C₂-H and C₁-H), 5.78 (1H, d, J=8.9 Hz, NH, exch), 5.88 (1H, m, C₅-H), 7.45 (2H, m, arom H), 7.57 (1H, m, arom H), 8.02 (2H, m, arom H). Deprotection of 15 to 18. A solution of 15 (43 mg, 0.0443 mmol) and NaOMe (excess) in MeOH (2 ml) was stirred for 3 h at room temperature and evaporated to give a residue, which was purified by silica gel column chromatography (10g; $CHCl_3$: MeOH = 10 : 1) to afford 18 (26 mg, 84%) as a colorless waxy solid. Recrystallization from MeOH-H₂O gave a colorless solid 18, mp 158°C. IR 3360br, 2920, 2850, 1645, 1535, 1460, 1430, 1370, 1260, 1160, 1070, 1040, 890, 715, 630; FABMS 698 (MH⁺), 680, 519, 280, 262; ¹H-NMR (270 MHz) 0.88 (6H, t, J=6.6 Hz, C_{18} -H and C' $_{16}$ -H), 1.25 (40H, s-like m, $C_{11}-H \sim C_{17}-H$ and $C'_{3}-H \sim C'_{15}-H$, 1.56 (2H, m, $C_{6}-H$, $C_{7}-H$, or $C_{10}-H$), 1.9-2.2 (6H, m, C₆-H, C₇-H, or C₁₀-H and C'₂-H), 3.3-3.6 (5H, m, H-2 H-6), 3.8-4.0 (4H, m, C₁-H, C₂-H, and H-6), 4.07 (1H, m, C₃-H), 4.2-4.5 (3H, m, OH, exch), 4.35 (1H, d, J=7.0 Hz, H-1), 5.11 (1H, br, OH, exch), 5.29-5.42 (3H, m, C_8-H , C_6-H , and OH; ZH after D_7O addition), 5.48 (1H, dd, J=15.2, 6.6 Hz, C_{4} -H), 5.75 (1H, m, C_{5} -H), 6.64 (1H, d-like, NH, exch). Anal. Calcd for C₄₀H₇₅NO₈ : C, 68.83; H, 10.83; N, 2.01. Found : C, 68.69, H, 11.12; N, 1.97.

Deprotection of 16 to 19. A solution of 16 (53 mg, 0.0546 mmol) and NaOMe (excess) in MeOH (2 ml) was stirred for 9 h at room temperature and then evaporated to give a residue, which was purified by silica gel column chromatography (10 g; CHCl₃ : MeOH = 10 : 1) to afford 19 (23 mg, 60%) as a colorless waxy solid. Recrystallization from MeOH-H₂O gave a colorless solid 19, mp 159°C. IR 3400br, 2910, 2845, 1640, 1535, 1460, 1370, 1160, 1070, 1040, 715; FABMS 698 (MH⁺), 680, 518, 280, 262; ¹H-NMR (270 MHz) 0.88 (6H, t, J=6.7 Hz, C₁₈-H and C'₁₆-H), 1.26 (40H, s-like m, C₁₁-H ~ C₁₇-H and C'₃-H ~ C'₁₅-H), 1.60 (2H, m, C₆-H, C₇-H, or C₁₀-H), 1.9-2.2 (6H, m, C₆-H, C₇-H, or C₁₀-H and C'₂-H), 3.25 (1H, br, OH, exch), 3.37 (3H, m, methine-H x2 and exch OH), 3.55 (2H, m, methine-H), 3.72 (1H, dd-like, methine-H or C₁-H), 3.8-4.3 (7H, m, methine-H, C₁-H, and exch OH x2), 4.33 (1H, d, J=7.6 Hz, H-1), 4.47 (1H, br, OH, exch), 5.29-5.43 (2H, m, C₈-H and C₉-H), 5.50 (1H, dd, J=15.5,

6.3 Hz, C_4 -H), 5.76 (1H, m, C_5 -H), 6.31 (1H, d, J=8.2 Hz, NH, exch). Anal. Calcd for $C_{40}H_{75}NO_8 \cdot 2/3H_2O$: C, 67.66; H, 10.84; N, 1.97. Found : C, 67.66; H, 10.88; N, 1.98.

Glycosylation and deprotection of 5 to 1b. To a mixture of the ceramide 5 (300 mg, 0.430 mmol), the imidate 14^{6} (460 mg, 0.934 mmol), and molecular sieves 4A (1.5 g) was added CH_2Cl_2 (9 ml) <u>via</u> syringe under argon atmosphere and the mixture was cooled in an ice bath. To this mixture was added dropwise a solution of BF_3 -etherate (0.12 ml, 0.951 mmol) in CH_2Cl_2 (1 ml) via syringe at the same temperature. The cooling bath was removed and the reaction mixture was stirred for 1 h at room temperature. To the mixture was added a saturated NaHCO3 solution (2 ml) and the resulting mixture was filtered and washed with CHCl₃. The filtrate and washings were washed successively with saturated NaHCO₃ solution, water, and brine and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave an almost colorless caramel (770 mg), which was column chromatographed on silica gel (80 g; toluene : acetone = 10 : 1). The first eluate gave 21 (38 mg, 12%) as a colorless waxy solid. The second eluate gave 20 (452 mg) as a colorless caramel with some impurities derived from the imidate. 21: $[\alpha]_{D}^{20}$ +19.5°(c 0.38, CHCl₃); IR(Neat) 3340, 3070, 3005, 2960, 2920, 2850, 1740, 1715, 1665, 1660, 1580, 1540, 1490, 1470, 1450, 1430sh, 1375, 1315, 1260, 1235, 1180, 1145, 1115, 1100sh, 1070, 1045, 1030, 970, 940, 890, 850, 810, 715, 690, 645, 605, 560; EIMS 739 (M⁺), 680, 618, 105, 43 (base peak); ¹H-NMR (200 MHz) 0.88 (6H, t, J=6.4 Hz, C_{18} -H and C_{16} '-H), 1.25 (38H, s-like m, C_{11} -H ~ C_{17} -H and C_4 '-H ~ C_{15} '-H), 1.79 (2H, m) and 1.9-2.2 (6H, m, C₆-H, C₇-H, C₁₀-H, and C₃'-H), 2.02 (3H, s, CH₃CO), 2.12(3H, s, CH₃CO), 4.13 (1H, m, C₁-H), 4.3-4.6 (2H, m, C₁-H and C₂-H), 5.13 (1H, dd, J=7.3, 4.9 Hz, $C_{2}'-H$), 5.22-5.63 (4H, m, $C_{3}-H$, $C_{4}-H$, $C_{8}-H$, and $C_{9}-H$), 5.91 (1H, m, C₅-H), 6.49 (1H, d, J=8.8 Hz, NH), 7.46 (2H, t-like, J=7.3 Hz), 7.56 (1H, m), and 8.04 (2H, d-like, J=7.3 Hz)(arom H). 20: FABMS 1028 (MH⁺), 906, 443, 331. The protected cerebroside 20 (452 mg) was dissolved in MeOH (6 ml). To this solution was added NaOMe (53 mg) and the mixture was stirred for 2 h at room temperature. The reaction mixture was evaporated to give a residue, which was purified by silica gel column chromatography (35 g; $CHCl_3$: MeOH = 10 : 1) to give 1b (176 mg, 57%) as a colorless solid; $[\alpha]_{D}^{20}$ +4.6° (c 1.76, $CHCl_2$: MeOH = 1 : 1 by vol). Recrystallization from MeOH-H₂O gave a clolrless solid 1b (155 mg); mp 183°C. IR 3400br, 3000, 2960sh, 2920, 2850, 1645, 1530, 1460, 1430, 1375, 1310br, 1260sh, 1160, 1075, 1040sh, 890, 720; FABMS 714 (MH⁺), 696, 534, 280, 262; ¹H-NMR (400 MHz)(CDC1₃-CD₃OD, 30 : 25 by vol) 0.89 (6H, t, J=6.9 Hz, C₁₈-H and C₁₆'-H), 1.27 (36H, s-like m) and 1.42 $(2H, m)(C_{11}-H \sim C_{17}-H \text{ and } C_4'-H \sim C_{15}'-H)$, 1.57 (1H, m), 1.75 (1H, m), 2.02 (2H, q, J=6.6 Hz), and 2.11 $(4H, m)(C_6-H, C_7-H, C_{10}-H, and C_3'-H)$, 3.24 $(1H, m)(C_6-H, C_7-H, C_{10}-H, and C_3'-H)$ t, J=8.5 Hz, H-2, H-3, or H-4), 3.31 (1H, m, H-5), 3.41 (2H, t, J=8.5 Hz, H-

2, H-3, or H-4), 3.72 (1H, dd, J=12.0, 5.4 Hz, H-6), 3.75 (1H, dd, J= 10.1, 3.2 Hz, C₁-H), 3.87 (1H, dd, J=12.1, 2.4 Hz, H-6), 4.02 (2H, dd-like m, C₂-H and $C_2'-H$, 4.08 (1H, dd, J=10.1, 5.7 Hz, C_1-H), 4.14 (1H, t, J=7.3 Hz, $\overline{C_3}-H$ H), 4.28 (1H, d, J=7.8 Hz, H-1), 5.36 (2H, m, $C_{g}H$ and $C_{o}-H$), 5.49 (1H, dd, J=15.4, 7.2 Hz, $C_{4}-H$), 5.75 (1H, dt, J=15.4, 6.7 Hz, $C_{5}-H$); (400 MHz)(in Pyridine-d₅) 0.87 (6H, t, J=6.8 Hz, C_{18} -H and C_{16} '-H), 1.27 (36H, s-like m) and 1.67-1.85 (2H, m)(C_{11} -H ~ C_{17} -H and C_4' -H ~ C_{15}' -H), 1.98-2.25 (8H, m, C_6-H , C_7-H , $C_{10}-H$, and $C_3'-H$), 3.91 (1H, m, H-5; ddd-like after D_90 addition), 4.03 (1H, m, H-2, H-3, or H-4; t, J=8.2 Hz after $D_{2}O$ addition), 4.22 (2H, m, H-2, H-3, or H-4; t-like after D₂O addition), 4.26 (1H, dd, J=10.4, 3.4 Hz, C_1-H), 4.36 (1H, dt, J=11.5, 5.8 Hz, H-6; dd, J=11.9, 5.5 Hz after D_2O addition), 4.52 (1H, m, H-6; dd, J=11.9, 2.4 Hz after D_2O addition), 4.58 (1H, dt, J=8.0, 4.0 Hz, C₂'-H; dd, J= 8.0, 3.8 Hz after D₂O addition), 4.71 (1H, dd, J=10.5, 5.7 Hz, C₁-H), 4.78 (2H, m, C₂-H and C₃-H), after D_2O addition : 4.77 (1H, t, J=6.1 Hz, C_3 -H) and 4.81 (1H, ddd-like, $C_{2}-H)$, 4.91 (1H, d, J=7.8 Hz, H-1), 5.49 (2H, t-like m, J=4.7 Hz, $C_{8}-H$ and C_{q} -H), 5.93 (1H, dt, J=15.4, 5.6 Hz, C_{5} -H), 6.01 (1H, dd, J=15.6, 6.0 Hz, C₄-H), 6.35 (1H, br.t, OH, exch), 6.87 (1H, d, J=4.9 Hz, OH, exch), 7.14 (1H, br.s, OH, exch), 7.20 (2H, br.s, OH, exch), 7.63 (1H, d, J=5.0 Hz, OH, exch), 8.36 (1H, d, J=8.4 Hz, NH, exch); (400 MHz)(DMSO-d₆) 0.85 (6H, t, J=6.8 Hz, C_{18} -H and C'_{16} -H), 1.23 (38H, s-like m, C_{11} -H ~ C_{17} -H and C_{4} '-H ~ C'_{15} -H), 1.42 (1H, m, C₃'-H), 1.56 (1H, m, C₃'-H), 1.99 (6H, m, C₆-H, C₇-H, and C₁₀-H), 2.95 (1H, td, J=8.5, 4.4 Hz, H-2; t, J=8.4 Hz after D₂O addition), 3.03 (1H, td, J=9.0, 5.0 Hz, H-4; t, J=9.1 Hz after D_20 addition), 3.07 (1H, ddlike m, J=5.6, 2.0 Hz, H-5), 3.14 (1H, td, J=8.7, 4.9 Hz, H-3; t, J=8.8 Hz after D₇O addition), 3.43 (1H, dt, J=11.9, 6.0 Hz, H-6; dd, J=11.8, 5.8 Hz after D₂O addition), 3.53 (1H, dd, J=10.3, 3.6 Hz, C₁-H), 3.67 (1H, ddd-like, J=11.8, 6.0, 2.0 Hz, H-6; dd, J=11.8, 2.0 Hz after D₂O addition), 3.81 (2H, m, C₂-H and C₂'-H), 3.92 (1H, dd, J=10.3, 5.8 Hz, C₁-H), 4.00 (1H, q, J=6.3 Hz, C_3 -H; t, J=7.0 Hz after D_90 addition), 4.12 (1H, d, J=7.8 Hz, H-1), 4.49 (1H, t, J=5.9 Hz, OH, exch), 4.88 (1H, d, J=4.9 Hz, OH, exch), 4.89 (1H, d, J=4.7 Hz, OH, exch), 4.93 (1H, d, J=5.3 Hz, C₃-OH, exch), 4.94 (1H, d, J=4.0 Hz, OH, exch), 5.34 (2H, m, C₈-H and C₀-H), 5.41 (1H, dd, J=15.4, 6.7 Hz, C_A -H), 5.49 (1H, d, J=5.2 Hz, C_2 '-OH, exch), 5.59 (1H, dt, J=15.2, 6.3 Hz, $C_{5}-H$), 7.38 (1H, d, J=9.2 Hz, NH, exch). Anal. Calcd for $C_{40}H_{75}NO_{6} \cdot 3/4H_{2}O$: C, 66.04; H, 10.60; N, 1.93. Found : C, 66.03; H, 10.75; N, 1.88. Glycosylation and deprotection of 6 to 24. The mixture of the ceramide 6 sives 4A (1.5 g) in CH_2Cl_2 (9 ml) was treated with a solution of BF_3 -etherate (0.10 ml, 0.793 mmol) in CH_2Cl_2 (1 ml) in a similar manner mentioned above.

Similar work-up and chromatography gave 22 (344 mg) as a colorless caramel and 23 (49 mg, 18%) as a colorless waxy solid. 23: $\left[\alpha\right]_{D}^{20}$ -1.3° (c 0.49, CHCl₃); IR (Neat) 3340, 3330, 3090, 3070, 3010, 2920, 2850, 1740, 1715, 1665, 1600, 1580, 1535, 1490, 1465, 1450, 1430sh, 1370, 1340, 1315, 1260, 1230, 1180, 1110, 1100sh, 1070, 1040, 1030, 970, 935, 920, 890, 850, 800, 770, 710, 685, 670, 650, 600; EIMS 739 (M^+), 617, 105, 43 (base peak); ¹H-NMR (200 MHz) 0.88 (6H, t, J=6.6 Hz, C_{18} -H and C_{16} '-H), 1.25 (38H, s-like m, C_{11} -H ~ C_{17} -H and $C_4'-H \sim C_{15}'-H$, 1.79 (2H, m) and 1.9-2.2 (6H, m)(C_6-H , C_7-H , $C_{10}-H$, and $C_3'-H$, 2.02 (3H, s, CH_3CO), 2.06 (3H, s, CH_3CO), 4.23 (1H, dd, J=11.4, 4.6 Hz, C_1 -H), 4.34 (1H, dd, J=11.4, 6.6 Hz, C_1 -H), 4.55 (1H, m, C_2 -H), 5.11 (1H, t-like, J=6.1 Hz, C₂'-H), 5.2-5.6 (4H, m, C₃-H, C₄-H, C₈-H, and C₉-H), 5.89 $(1H, m, C_5-H), 6.50$ (1H, d, J=9.3 Hz, NH), 7.46 (2H, t-like, J=7.3 Hz), 7.56(1H, m), and 8.02 (2H, d-like, J=7.3 Hz)(arom H). 22: FABMS 1028 (MH⁺), 906, 331, 262. Similar deprotection of 22 (344 mg) with NaOMe (57 mg) in MeOH (7 ml) and purification gave 24 (149 mg, 55%) as a colorless solid; $[\alpha]_{D}^{20}$ +1.7° (c 1.49, CHCl₃ : MeOH = 1 : 1 by vol). Recrystallization from MeOH-H₂O gave a colorless solid 24 (140 mg); mp 149°C. IR 3400br, 3000, 2960sh, 2920, 2850, 1650, 1525, 1460, 1430, 1405, 1370, 1310, 1270br, 1160, 1070, 1030sh, 890, 720; FABMS 714 (MH^+), 696, 535, 280, 262; ¹H-NMR (400 MHz)(CDC1₃-CD₃OD, 30 : 25 by vol) 0.89 (6H, t, J=6.9 Hz, C_{18} -H and C_{16} '-H), 1.27 (37H, m of s-like) and 1.43 (1H, m)(C_{11} -H C_{17} -H and C_4 '-H C_{15} '-H), 1.53 (1H, m), 1.81 (1H, m), 2.02 (2H, q, J=6.7 Hz), and 2.10 (4H, m)(C_6-H , C_7-H , $C_{10}-H$, and $C_3'-H$), 3.25 (1H, t, J=8.5 Hz, H-2, H-3, or H-4), 3.29 (1H, m, H-5), 3.40 (2H, t-1ike m, H-2, H-3, or H-4), 3.72 (1H, dd, J=12.3, 5.0 Hz, H-6), 3.83 (1H, dd, J=10.7, 3.2 Hz, C₁-H), 3.87 (1H, dd, J=12.3, 2.5 Hz, H-6), 3.94 (1H, dt, J=7.0, 3.5 Hz, C_2-H), 3.99 (1H, dd, J=8.7, 3.6 Hz, $C_2'-H$), 4.09 (1H, dd, J=10.8, 3.9 Hz, C_1-H), 4.19 (1H, t, J=6.7 Hz, C_2-H), 4.28 (1H, d, J=7.8 Hz, H-1), 5.37 (2H, m, C_8 -H and C_9 -H), 5.53 (1H, dd, J=15.4, 7.0 Hz, C_{L} -H), 5.75 (1H, dt, J=15.4, 6.5 Hz, C₅-H); (400 MHz)(Pyridine-d₅) 0.87 (6H, t, J=6.8 Hz, C₁₈-H and C₁₆'-H), 1.25 (36H, s-like m), 1.72 (1H, m) and 1.83 (1H, m)(C₁₁-H~ C_{17} -H and C_{4}' -H ~ C_{15}' -H), 2.03-2.15 (7H, m) and 2.27 (1H, m)(C_{6} -H, C_{7} -H, C10-H, and C3'-H), 3.93 (1H, m, H-5), 4.03 (1H, m, H-2, H-3, or H-4; t, J=8.3 Hz after D_2O addition), 4.20 (2H, m, H-2, H-3, or H-4), after D_2O addition : 4.18 (1H, t, J=8.6 Hz) and 4.22 (1H, t, J=8.4 Hz) , 4.37 (1H, dt, J=11.9, 6.0 Hz, H-6; dd, J=12.1, 5.5 Hz after D_2O addition), 4.43 (1H, dd, J=10.8, 3.4 Hz, C_1 -H), 4.57 (2H, m, C_2 '-H and H-6), after D_2O addition : 4.54 (1H, dd, J=11.9, 2.0 Hz, H-6) and 4.58 (1H, dd, J=8.4, 3.7 Hz, C₂'-H), 4.63 (1H, dd, J=10.8, 4.6 Hz, C_1 -H), 4.82 (2H, m, C_2 -H and C_3 -H), after D_2O addition : 4.81 (1H, m, C_2 -H) and 4.83 (1H, t, J=6.4 Hz, C_3 -H) , 4.95 (1H, d, J=7.8 Hz, H-1), 5.46 (2H, t-like m, J=4.7 Hz, C₈-H and C₉-H), 5.93 (1H, dt, J=15.3, 5.8

Hz, C_5 -H), 6.04 (1H, dd, J=15.3, 6.0 Hz, C_4 -H), 6.26 (1H, t, OH, exch), 6.69 (1H, d, J=5.2 Hz, OH, exch), 7.15 (1H, d, J=4.0 Hz, OH, exch), 7.17 (1H, br.s, OH, exch), 7.28 (1H, d, J=3.8 Hz, OH, exch), 7.56 (1H, d, J=5.8 Hz, OH, exch), 8.44 (1H, d, J=8.4 Hz, NH, exch); (400 MHz)(DMSO-d₆) 0.85 (6H, t, J=6.9 Hz, C_{18} -H and C_{16} '-H), 1.23 (38H, s-like m, C_{11} -H ~ C_{17} -H and C_{4} '-H~~ C₁₅'-H), 1.39 (1H, m, C₃'-H), 1.60 (1H, m, C₃'-H), 1.99 (6H, m, C₆-H, C₇-H, and C₁₀-H), 2.96 (1H, td, J=8.9, 4.4 Hz, H-2, H-3, or H-4 ; t, J=8.3 Hz after D_{20} addition), 3.02 (1H, td, J=8.6, 5.1 Hz, H-2, H-3, or H-4; t, J=9.1 Hz after D₂O addition), 3.07 (1H, dd-like m, J=5.8, 1.8 Hz, H-5), 3.13 (1H, td, J=8.7, 4.7 Hz, H-2, H-3, or H-4; t, J=8.8 Hz after D_2^{0} addition), 3.42 (1H, dt, J=11.6, 5.8 Hz, H-6; dd, J=11.8, 6.0 Hz after D_{20} addition), 3.66 (1H, ddd, J=11.8, 6.3, 2.0 Hz, H-6; dd, J=11.9, 2.0 Hz after D₂O addition), 3.71 (1H, dd, J=10.5, 4.1 Hz, C_1 -H), 3.79 (3H, m, C_1 -H, C_2 -H, and C_2 '-H), 4.02 (1H, q, J=6.4 Hz, C_3 -H; t, J=6.4 Hz after D_20 addition), 4.14 (1H, d, J=7.8 Hz, H-1), 4.51 (1H, t, J=6.1 Hz, OH, exch), 4.87 (1H, d, J=5.7 Hz, OH, exch), 4.88 (1H, d, J=5.0 Hz, OH, exch), 4.91 (2H, d, J=4.6 Hz, OH, exch), 5.33 (2H, m, C₈-H and C₉-H), 5.34 (1H, d, J=6.0 Hz, C₂-OH, exch), 5.42 (1H, dd, J=15.6, 6.6 Hz, C_4 -H), 5.58 (1H, dt, J=15.3, 6.4 Hz, C_5 -H), 7.37 (1H, d, J=8.9 Hz, NH, exch). Anal. Calcd for $C_{40}H_{75}NO_9$: C, 67.28; H, 10.59; N, 1.96. Found : C, 67.31; H, 10.63; N, 1.95.

Glycosylation and deprotection of 7 to 27. The mixture of the ceramide 7 (320mg, 0.458 mmol), the imidate 14 (490 mg, 0.995 mmol), and molecular sieves 4A (1.5 g) in CH_2Cl_2 (9 ml) was treated with a solution of BF_3 etherate (0.13 ml, 1.03 mmol) in CH2Cl2 (1 ml) in a similar manner mentioned above. Similar work-up and chromatography gave 25 (447 mg) as a colorless caramel and 26 (59 mg, 17%), $[\alpha]_D^{20}$ +1.3°(c 0.59, CHCl₃) as a colorless waxy solid, which was confirmed with 23 by TLC and IR spectrum. 25 : FABMS 1028 (MH⁺), 906, 331, 262. Similar deprotection of 25 (447 mg) with NaOMe (65 mg) in MeOH (8 ml) and purification gave 27 (187 mg, 57%) as a colorless solid; $[\alpha]_{D}^{20}$ -14.7°(c 1.87, CHCl₃ : MeOH = 1 : 1 by vol). Recrystallization from MeOH-H₂O gave a colorless solid 27 (147 mg); mp 151°C. IR 3360br, 3005, 2960, 2920, 2850, 1650, 1550sh, 1535, 1465, 1430, 1410, 1375, 1310sh, 1270br, 1160, 1075, 1040, 970sh, 910sh, 895, 720, 630-580br; FABMS 714 (MH⁺), 696, 534, 280, 262 ; ¹H-NMR (400 MHz)(CDC1₃-CD₃OD, 30 : 25 by vol) 0.89 (6H, t, J=6.9 Hz, C_{18} -H and C_{16} '-H), 1.27 (36H, s-like m) and 1.44 (2H, m)(C_{11} -H ~ C_{17} -H and C₄'-H- C₁₅'-H), 1.57 (1H, m), 1.78 (1H, m), 2.02 (2H, q, J=6.6 Hz), and 2.11 (4H, m)(C₆-H, C₇ -H, C₁₀-H, and C₃'-H), 3.23 (1H, t, J=7.6 Hz, H-2, H-3, or H-4), 3.30 (1H, m, H-5), 3.39 (2H, m, H-2, H-3, or H-4), 3.73 (2H, m, C₁-H and H-6), 3.88 (1H, dd, J=10.0, 1.5 Hz, H-6), 4.02 (3H, m, C₁-H, C₂-H, and $C_{2}'-H$), 4.22 (1H, t, J=5.5 Hz, $C_{3}-H$), 4.27 (1H, d, J=7.6 Hz, H-1), 5.37 (2H,

m, C_8 -H and C_9 -H), 5.51 (1H, dd, J= 15.3, 6.9 Hz, C_4 -H), 5.76 (1H, dt, J=15.5, 7.0 Hz, C₅-H); (400 MHz)(Pyridine-d₅) 0.87 (6H, t, J=6.7 Hz, C₁₈-H and $C_{16}'-H$, 1.25 (36H, s-like m) and 1.68-1.84 (2H, m)($C_{11}-H \sim C_{17}-H$ and $C_4'-H \sim C_{15}'-H$, 2.03-2.27 (8H, m, C_6-H , C_7-H , $C_{10}-H$, and $C_3'-H$), 3.92 (1H, m, H-5; ddd-like after D_2O addition), 4.06 (1H, m, H-2, H-3, or H-4; t, J=8.4 Hz after D_2O addition), 4.24 (2H, m, H-2, H-3, or H-4), after D_2O addition: 4.22 (1H, t, J=6.7 Hz) and 4.24 (1H, t, J=8.4 Hz), 4.31 (1H, dd, J=10.8, 4.1Hz, C1-H), 4.37 (1H, dt, J=11.9, 5.7 Hz, H-6; dd, J=11.9, 5.3 Hz after D₂O addition), 4.49 (1H, ddd, H-6; dd, J=11.6, 2.0 Hz, after D_2O addition), 4.59 (1H, dt-like, C_2 '-H; dd, J=8.0, 3.8 Hz after D_2O addition), 4.67 (1H, dd, J=10.6, 6.0 Hz, C_1-H), 4.85 (2H, m, C_2-H and C_3-H), 4.96 (1H, d, J=7.6 Hz, H-1), 5.46 (2H, t-like m, J=4.6 Hz, C_8 -H and C_9 -H), 6.00 (2H, d-like m, J=4.1 Hz, C_{Δ} -H and C_{5} -H), 6.27 (1H, t, J=6.5 Hz, OH, exch), 6.85 (1H, d, J=4.4 Hz, OH, exch), 7.15 (1H, d, J=4.8 Hz, OH, exch), 7.18 (1H, d, J=4.0 Hz, OH, exch), 7.50 (1H, d, J=5.6 Hz, OH, exch), 8.37 (1H, d, J=8.2 Hz, NH, exch); $(400 \text{ MHz})(\text{DMSO-d}_6) 0.85 (6\text{H}, t, J=6.9 \text{ Hz}, C_{18}-\text{H} \text{ and } C_{16}'-\text{H}), 1.23 (38\text{H}, s-16)$ like m, $C_{11}-H \sim C_{17}-H$ and $C_{4}'-H \sim C_{15}'-H$, 1.41 (1H, m, $C_{3}'-H$), 1.57 (1H, m, $C_{3}'-H$), 2.01 (6H, m, $C_{6}-H$, $C_{7}-H$, and $C_{10}-H$), 2.95 (1H, td, J=8.3, 4.1 Hz, H-2, H-3, or H-4; t, J= 8.4 Hz, after D_2O addition), 3.06 (2H, m, H-2, H-3, or H-4 and H-5), after $D_{2}O$ addition : 3.04 (1H, t, J=8.9 Hz, H-2, H-3, or H-4) and 3.07 (1H, m, H-5), 3.12 (1H, td, J=8.7, 4.9 Hz, H-2, H-3, or H-4; t, J=9.1 Hz after D₂O addition), 3.44 (1H, dt, J=11.8, 6.0 Hz, H-6), 3.49 (1H, dd, J=10.2, 4.4 Hz, C₁-H), 3.66 (1H, dd, J= 12.2, 6.3 Hz, H-6; dd, J=11.9, 2.0 Hz after D_2O addition), 3.81 (2H, m, C_2 -H and C_2 '-H), after D_2O addition : 3.80 (1H, dd, J=7.6, 4.2 Hz, C_2 '-H) and 3.81 (1H, partially overlapped with C₂'-H peak, C₂-H), 3.88 (1H, dd, J=10.1, 6.0 Hz, C₁-H), 4.05 (1H, q, J= 6.0 Hz, C_3 -H; t, J=6.5 Hz after D_2O addition), 4.10 (1H, d, J=7.8 Hz, H-1), 4.47 (1H, t, J=6.0 Hz, OH, exch), 4.88 (1H, d, J=4.7 Hz, OH, exch), 4.90 (1H, d, J=4.7 Hz, OH, exch), 4.93 (1H, d, J=5.5 Hz, OH, exch), 4.95 (1H, d, J=4.7 Hz, OH, exch), 5.29 (1H, d, J=5.8 Hz, C_2 '-OH, exch), 5.34 (2H, m, C_8 -H and C_0 -H), 5.44 (1H, dd, J=15.3, 6.3 Hz, C_{L} -H), 5.61 (1H, dt, J=15.4, 6.6 Hz, C_{5} -H), 7.38 (1H, d, J=8.9 Hz, NH, exch). Anal. Calcd for $C_{40}H_{75}NO_{9}$ 1/2 H₂O : C, 66.45; H, 10.60; N, 1.94. Found : C, 66.58; H, 10.82; N, 1.90. Glycosylation and deprotction of 8 to 30. The mixture of the ceramide 8 (430 mg, 0.616 mmol), the imidate 14 (660 mg, 1.34 mmol), and molecular sieves 4A (2.0 g) in CH_2Cl_2 (12 ml) was treated with a solution of BF_3 -etherate (0.17 ml, 1.35 mmol) in CH₂Cl₂ (1 ml) in a similar manner mentioned above. Similar work-up and chromatography gave 28 (660 mg) as a colorless caramel and 29 (66 mg, 15%), $[\alpha]_{n}^{20}$ -19.4°(c 0.66, CHCl₃) as a colorless waxy solid, which was confirmed with 21 by TLC and IR spectrum. 28: FABMS 1028 (MH⁺), 906, 331,

262. Similar deprotection of $\mathbf{28}$ (660 mg) with NaOMe (96 mg) in MeOH (8 ml) and purification gave 30 (249 mg, 57%) as a colorless solid; $[\alpha]_{D}^{20}$ -18.7°(c 2.49, $CHCl_3$: MeOH = 1 : 1 by vol). Recrystallization from MeOH-H₂O gave a colorless solid 30 (209 mg); mp 178°C. IR 3380br, 3005, 2960, 2850, 1645, 1530, 1465, 1430, 1375, 1320, 1285, 1160, 1075, 1040, 970sh, 895, 720, 630br; FABMS 714 (MH⁺), 696, 534, 262; ¹H-NMR (400 MHz)(CDC1₃-CD₃OD, 30 : 25 by vol) 0.89 (6H, t, J=6.7 Hz, C_{18} -H and C_{16} '-H), 1.27 (36H, s-like m) and 1.43 (2H, m)(C_{11} -H ~ C_{17} and C_{4} '-H ~ C_{15} '-H), 1.54 (1H, m), 1.75 (1H, m), 2.02(2H, q, J=6.6 Hz), and 2.10 (4H, m)(C₆-H, C₇-H, C₁₀-H and C₃'-H), 3.25 (1H, t, J=8.2 Hz, H-2, H-3 or H-4), 3.29 (1H, m, H-5), 3.41 (2H, t, J=8.8 Hz, H-2, H-3, H-4), 3.72 (1H, dd, J=12.2, 5.3 Hz, H-6), 3.87 (2H, dd-like, C₁-H and H-6), 3.96 (1H, m, C_2 -H), 4.00 (1H, dd, J=8.1, 3.7 Hz, C_2 '-H), 4.06 (1H, dd, J=10.4, 4.0 Hz, C_3-H), 4.12 (1H, t, J= 6.4 Hz, C_3-H), 4.27 (1H, d, J=7.8 Hz, H-1), 5.37 (2H, m, C_8 -H and C_9 -H), 5.51 (1H, dd, J=15.4, 7.3 Hz, C_4 -H), 5.75 (1H, dt, J=15.4, 6.3 Hz, C₅-H); (400 MHz)(pyridine-d₅) 0.88 (6H, t, J=6.8 Hz, C₁₈-H and C₁₆'-H), 1.27 (36H, s-like m), 1.74 (1H, m), and 1.81 (1H, m)(C₁₁-H ~ C₁₇-H and C₄'-H ~ C₁₅'-H), 2.01-2.26 (8H, m, C₆-H, C₇-H, C₁₀-H, and C₃'-H), 3.92 (1H, m, H-5; ddd after D_2O addition), 4.02 (1H, dt, H-2, H-3 or H-4; t, J=8.3 Hz after D_2O addition), 4.19 (2H, m, H-2, H-3, or H-4), after D_2O addition: 4.16 (1H, t, J=9.1 Hz) and 4.22 (1H, t, J=8.7 Hz) , 4.35 (1H, dt, J=11.6, 5.8 Hz, H-6; dd, J=12.0, 5.6 Hz after $D_{2}O$ addition), 4.47 (1H, dd, J=10.0, 2.0 Hz, C_1 -H), 4.57 (3H, m, C_1 -H, C_2 '-H, and H-6), after D_2O addition: 4.52 (1H, dd, J=11.7, 2.1 Hz, H-6), 4.57 (1H, dd, J=10.0, 3.0 Hz, C₁-H) , and 4.59 (1H, dd, J=8.1, 3.8 Hz, C₂'-H), 4.79 (2H, m, C₂-H and C₃-H; d-like, J=3.4 Hz after $D_{2}O$ addition), 4.95 (1H, d, J=7.6 Hz, H-1), 5.49 (2H, t-like m, J=5.7 Hz, C_8 -H and C_0 -H), 5.92 (1H, dt, J=15.4, 5.8 Hz, C_5 -H), 6.03 (1H, dd, J=15.4, 5.6 Hz, C_{Δ} -H), 6.45 (1H, t, J=6.4 Hz, OH, exch), 6.73 (1H, d, J=5.2 Hz, OH, exch), 7.14 (1H, d, J=4.1 Hz, OH, exch), 7.18 (1H, d, J=4.0 Hz, OH, exch), 7.32 (1H, d, J= 4.2 Hz, OH, exch), 7.60 (1H, d, J=5.3 Hz, OH, exch), 8.36 (1H, d, J= 8.4 Hz, NH, exch); (400 MHz)(DMSO-d₆) 0.85 (6H, t, J=6.9 Hz, C_{18} -H and C_{16} '-H), 1.23 (38H, s-like m, C_{11} -H ~ C_{17} -H and C_{4} '-H ~ C₁₅'-H), 1.40 (1H, m, C₃'-H), 1.55 (1H, m, C₃'-H), 1.98 (4H, m) and 2.03 (2H, m)(C₆-H, C₇-H, and C₁₀-H), 2.96 (1H, td, J=8.5, 4.3 Hz, H-2, H-3, or H-4; t, J=8.4 Hz after $D_{2}O$ addition), 3.03 (1H, td, J=8.7, 5.2 Hz, H-2, H-3, or H-4; t, J=9.0 Hz after D_2O addition), 3.08 (1H, dd-like, J=5.7, 2.0 Hz, H-5), 3.13 (1H, td, J=8.8, 4.9 Hz, H-2, H-3, or H-4; t, J=8.7 Hz after $D_{2}O$ addition), 3.42 (1H, dt, J=11.6, 5.8 Hz, H-6; dd, J=11.9, 6.0 Hz after D₂O addition), 3.66 (1H, ddd, J=12.1, 6.3, 2.0 Hz, H-6; dd, J=12.0, 2.0 Hz after D₂0 addition), 3.72-3.81 (4H, m, C₁-H, C₂-H, and C₂'-H), 4.00 (1H, q, J=6.9 Hz, C_3 -H; t, J=6.9 Hz after D_2O addition), 4.15 (1H, d, J=7.8 Hz, H-1), 4.54 (1H, t, J=6.0 Hz, OH, exch), 4.87 (1H, d, J=5.6 Hz, OH, exch), 4.88 (1H, d, J=5.0

Hz, OH, exch), 4.90 (1H, d, J=4.9 Hz, OH, exch), 4.96 (1H, d, J= 4.3 Hz, OH, exch), 5.33 (2H, m, C₈-H and C₀-H), 5.39 (1H, dd, J= 15.4, 6.7 Hz, C₄-H), 5.58 (1H, dt, J=15.1, 5.8 Hz, C₅-H), 5.58 (1H, d, J=5.0 Hz, C₂'-OH, exch), 7.35 (1H, d, J=9.0 Hz, NH, exch). Anal Calcd for $C_{40}H_{75}NO_9$ 1/4 H₂O : C, 66.86; H, 10.59; N, 1.95. Found : C, 66.93; H, 10.95; N, 1.95. Reduction and detritylation of 31 to 32. A solution of the ceramide 31 (130 mg, 0.156 mmol) in MeOH (16 ml) was hydrogenated with PtO $_{
m 2}$ (50 mg) under H $_{
m 2}$ gas for 110 min. To the reaction mixture was added $ext{CHCl}_3$ (10 ml) and then filtered. The filtrate was evaporated to give colorless crystals (130 mg), which were dissolved in CH_2Cl_2 -MeOH (10 ml, 1 : 1 by vol). To this solution was added p-toluenesulfonic acid (monohydrate)(30 mg, 0.158 mmol) and the mixture was stirred for 1.5 h at room temperature. The reaction mixture was diluted with CHCl₃ (50 ml), washed with saturated NaHCO₃ solution and brine, and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a residue (130 mg), which was purified by silica gel column chromatography (20 g; CHCl₃ : MeOH = 40 : 1) to afford 32 (76 mg, 82%) as a colorless solid. $[\alpha]_D$ $+11.3^{\circ}$ (c 0.76, CHCl₃ : MeOH = 1 : 1 by vol). Deacetylation of 32 to 33. To a solutuon of 32 (76 mg, 0.127 mmol) in MeOH (10 ml) was added K_2CO_3 (170 mg, 1.23 mmol) and the mixture was stirred for 30 min at room temperature. The reaction mixture was diluted with $CHCl_3$ (50 ml), washed with water and brine, and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a colorless solid, which was purified by silica gel column chromatography (20 g; CHCl₃ : MeOH = 20 : 1) to afford 23 (61 mg, 86%) as a colorless crystalline solid. $[\alpha]_D^{20}$ +20.7° (c 0.61, CHCl₃ : MeOH = 1 : 1 by vol). Recrystallization from MeOH gave a colorless crystalline powder; mp 121.5-124°C. $\{\alpha\}_{D}^{20}$ +19.6°(c 0.32, CHCl₃ : MeOH = 1 : 1 by vol). IR 3380br, 2955, 2915, 2850, 1645, 1530, 1465, 1130, 1100, 1070, 1040sh, 720; EIMS 555 (M^+), 537, 297, 60 (base peak), 43; ¹H-NMR (200 MHz)(CDCl₃-DMSO-d₆) 0.88 (6H, t, J=6.8 Hz, C₁₈-H and C₁₆'-H), 1.1-1.9 (54H, m, C_4 -H ~ C_{17} -H and C_3 '-H ~ C_{15} '-H), 3.6-4.1 (7H, m, C_1 -H, C_2 -H, C_3 -H, C_2 '-H, C_1 -OH, and C_3 '-OH), after D_2O addition : 3.60-3.94 (4H, m, C_1 -H, C_2 -H, and C_3-H and 4.05 (1H, q, $C_2'-H$), 4.33 (1H, d, J=4.9 Hz, $C_2'-OH$, exch), 7.35 (1H, d, J=7.8 Hz, NH, exch). Anal. Calcd for C₃₄H₆₉NO₄ : C, 73.46; H, 12.51; N, 2.52. Found : C, 73.67; H, 12.68; N, 2.52. Catalytic 'nybrogenation of D-sphingosine (34) to 35. A solution of commercial D-sphingosine⁸⁾ (80 mg, 0.267 mmol) in MeOH (15 ml) was hydrogenated with PtO_2 (30 mg) under H₂ gas for 130 min. The reaction mixture was filtered and evaporated to give 35 as a coloriess solid (39 mg, 98%). Acetonization of 35 to 36. A solution of 35 (39 mg, 0.262 mm) and ()-10camphorsulfonic acid (90 mg, 0.387 mmol) in 2,2-dimethoxypropane (15 ml) was refluxed for 1 'n and then evaporated to give a residue, which was dissolved

in AcOEt (50 ml). The solution was washed successively with saturated NaHCO₃ solution, water, and brine and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a yellow caramel, which was purified by silica gel column chromatography (20 g; CHCl₃ : MeOH = 40 : 1) to afford 36 (62 mg, 69%) as a colorless caramel.

Condensation of 36 with $2(\underline{R})$ -acetoxypalmitic acid (3) to 37. To a stirred suspension of $2(\underline{R})$ -3⁹⁾ (60 mg, 0.191 mmol), DCC (42 mg, 0.204 mmol) and 1-hydroxybenzotriazole (27 mg, 0.200 mmol) in CH₂Cl₂ (6 ml) was added dropwise a solution of 36 (62 mg, 0.182 mmol) in CH₂Cl₂ (4 ml). The reaction mixture was stirred for 1 h at room temperature, passed through Celite, and washed with CHCl₃. The filtrate and washings were washed successively with saturated NaHCO₃ solution, water, and brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a residue, which was purified by silica gel column chromatography (20 g; toluene : AcOEt = 5 : 1) to afford 37 (111 mg, 96%) as a colorless waxy solid.

Deacetonization of 37 to 32. To a solution of 37 (111 mg, 0.174 mmol) in MeOH-CH₂Cl₂ (10 ml, 1 : 1 by vol) was added <u>p</u>-toluenesulfonic acid (monohydrate) (30 mg, 0.158 mmol) and the mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with CHCl₃ (50 ml), washed with saturated NaHCO₃ solution and brine, and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a colorless solid, which was purified by silica gel column chromatography (20 g; CHCl₃ : MeOH = 40 : 1) to afford 32 (88 mg, 85%) as a colorless solid. $[\alpha]_D^{20}$ +11.9°(c 0.88, CHCl₃ : MeOH = 1 : 1 by vol).

Deacetylation of 32 to 33 (from natural sphingosine). To a solution of 32 (88 mg, 0.147 mmol) in MeOH (10 ml) was added K_2CO_3 (200 mg, 1.45 mmol) and the mixture was stirred for 30 min at room temperature. The reaction mixture was diluted with CHCl₃ (50 ml), washed with water and brine, and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a colorless solid, which was purified by silica gel column chromatography (20 g; CHCl₃ : MeOH = 20 : 1) to afford 33 (75 mg, 92%) as a colorless crystalline solid. $[\alpha]_D^{20}$ +20.8° (c 0.75, CHCl₃ : MeOH = 1 : 1 by vol). Recrystallization from MeOH gave a colorless crystalline powder; mp 121.5-124°C. $[\alpha]_D^{20}$ +19.6°(c 0.36, CHCl₃ : MeOH = 1 : 1 by vol). Anal. Calcd for $C_{34}H_{69}NO_4$: C, 73.46; H, 12.51; N, 2.52. Found : C, 73.43 ; H, 12.36 ; N, 2.47. This 33 was completely identical with the synthetic one obtained as above by TLC, IR, MS, and ¹H-NMR spectra.

Acknowledgement : We wish to thank Professor M. Yamazaki, Chiba University for generous gifts of cerebroside B_{1a} and B_{1b} . We also acknowledge financial support of this research by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan. We are grateful to Mrs.

H. Seki and Miss R. Hara of the Analytical Center of our University for measurement of 1 H-NMR spectrum. We are also grateful to the staff of the Analytical Division of Organic Chemistry Research Laboratory of Tanabe Seiyaku Co. Ltd. for spectral measurements (IR, Mass, and 1 H-NMR) and elemental analyses.

References and Notes

- + Present Address : Organic Research Laboratory, Tanabe Seiyaku.
- 1. Part I: S. Kodato, M. Nakagawa, K. Nakayama, and T. Hino, preceding paper in this issue.
- For recent reviews: a) S. Hakomori, ''Handbook of Lipid Research'', Vol 3, ''Sphingolipid Biochemistry'', J. N. Kanfer and S. Hakomori, Ed., Plenum Press, New York, 1983, p1-150; b)''New Comprehensive Biochemistry'', Vol 10, ''Glycolipids'', H. Wiegandt, Ed., Elsevier, Amsterdam, 1985.
- 3. D. Shapiro and H. M. Flowers, J. Am. Chem. Soc., 83, 3327 (1961)
- 4. a) K. Koike, M. Sugimoto, Y. Nakahara, and T. Ogawa, <u>Glycoconjugate J.</u>, 2, 105 (1985);
 b) R. R. Schmidt and R. Kläger, <u>Angew. Chem. Int. Ed. Engl.</u>, 24, 65 (1985).
- 5. a) For the isolation of 1b: E. Okuyama and M. Yamazaki, <u>Chem. Pharm.</u> <u>Bull.</u>, 31, 2209 (1983). b) For the total synthesis of 1b: M. Nakagawa, S. Kodato, K. Nakayama, and T. Hino, <u>Tetrahedron Lett.</u>, 28, 6281 (1987); K. Mori and T. Kinsho, <u>Liebigs Ann. Chem.</u>, 807 (1988); c) N.P. Singh and R.R. Schmidt, J. Carbhydrate Chem., 8, 199 (1989).
- 6. a) R. R. Schmidt and J. Michael, <u>Angew. Chem. Int. Ed. Engl.</u>, 19, 731 (1980). b) N.P. Singh and R.R. Schmidt, <u>J. Carbhydrate Chem.</u>, 8, 199 (1989).
- 7. HPLC was performed on TSK-GEL^R LS-410 column with MeOH-H₂O (95 : 5 by vol) at a flow rate 1 ml /min by an UV (220 nm) detector.
- 8. Natural sphingosine was purchased from Sigma Chemical Co..
- 9. See preceding paper and references cited therein.

7280